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Abstract—Privacy-preserving data sharing enables a wide
range of exploratory and secondary data analyses while protect-
ing the privacy of individuals in the datasets. Recent advance-
ments in machine learning, specifically generative adversarial
networks (GANs), have shown great promise for synthesizing
realistic datasets. In this work, we investigate the feasibility of
training GAN models privately in practical settings, where the
input data is distributed across multiple parties, and local data
may be highly skewed, i.e., non-IID. We examine centralized
private GAN solutions applied at each local party and propose
a federated solution that provides strong privacy and is suitable
for non-IID data. We conduct extensive empirical analysis with a
wide range of non-IID settings and data from different domains.
We provide in-depth discussions about the utility of the synthetic
data, the privacy risks in terms of membership inference attacks,
as well as the privacy-utility trade-off for private solutions.

Index Terms—Federated Learning, Differential Privacy, Non-
IID Data, Generative Adversarial Networks

I. INTRODUCTION

Sharing individual-level data is beneficial for collaborative
analyses and advancing research. However, sharing individu-
ally contributed data often gives rise to privacy concerns, as
even “anonymized” data can be re-identified by linking exter-
nal databases [1], or by examining unique behaviors, e.g., [2]
and [3]. Data synthesis, which generates fake records that cap-
ture the characteristics of real data, provides great promise for
privacy-protecting data sharing. Among existing data synthesis
techniques, Generative Adversarial Networks (GANs) [4] have
become the state-of-the-art approach for learning generative
models and providing high-quality synthetic data. They have
been successfully applied to synthesizing a variety of data
types, such as tabular and imaging data.

To deploy GANs for privacy-protecting data synthesis, there
are several practical challenges. Firstly, GAN models do
not provide guarantees on what the models and generated
data may reveal about real, sensitive training data. Recent
research has shown successful membership inference attacks
on GAN models [5], [6], where the participation of target
individuals may be inferred. Furthermore, real training data
for GAN models are often distributed across multiple parties,
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e.g., hospitals and banks, which may not be shared with
external parties. Moreover, local data often comes from non-
identical distributions, which may pose significant challenges
in machine learning applications [7].

To address those challenges, we propose two approaches
for private synthesis from decentralized non-IID data using
GANs. Furthermore, we adopt differential privacy to provide
rigorous privacy guarantees for input training data. As shown
in Figure 1, the first approach allows each party to train local
GAN models privately and only share synthetic samples. The
second approach leverages recent development in differential
privacy and federated learning and learns private GAN models
collaboratively with all parties. To address non-IID local data
distributions, we build our federated approach on a recently
proposed framework [8], which improves training convergence
by taking into account statistical heterogeneity among local
parties. To understand the practical privacy protection offered
by our proposed solutions, we adopt a range of membership
inference attacks and assess their accuracy. We conduct an
extensive empirical evaluation with data from multiple image
domains and in a variety of simulated non-IID settings. Our re-
sults help readers understand the utility and privacy properties
of the proposed solutions, as well as the effects of practical
factors, such as the privacy requirement, the number of parties,
and the level of skewness.

The rest of the paper is organized as follows: Section II
briefly describes recent work on generative models, privacy
in data synthesis, and federated learning frameworks; Section
III introduces the technical definition of differential privacy
and generative adversarial networks; Section IV presents our
proposed approaches to private data synthesis and non-IID data
simulation strategies; Section V describes practical utility and
privacy measures adopted in the problem setting; Section VI
presents a comprehensive empirical evaluation with real-world
datasets; Section VII provides interpretation of the results
and points out considerations for deployment; Section VIII
concludes the paper and states future research directions.

II. RELATED WORK

Generative adversarial networks (GANs) [4] have demon-
strated significant potential for learning complex distributions
and generating realistic datasets in a wide range of domains.



GANs learn a generator and a discriminator in an adversarial
process to produce high-quality synthetic data. Recent research
addresses challenges in learning GAN models, such as mode
collapse, instability, and architectural design [9].

Due to memorization and over-fitting, machine learning
models are prone to a range of privacy risks, such as member-
ship inference and model inversion. By accessing the trained
models, attackers may infer the participation of a target
individual [10] and even reconstruct representative training
data [11]. Several recent studies have synthesized various
attacks on membership inference for general machine learning
models [12] and GAN models specifically [6]. While crypto-
graphic approaches, such as [13], [14], have been proposed
to enable machine learning over private data, they incur high
computation and/or communication overheads. Furthermore,
privacy attacks may be launched when the learned models
are shared with untrusted recipients. As suggested in [10],
differential privacy [15], [16] is a promising solution to safe-
guard training data in machine learning applications. Several
approaches, surveyed in [17], have been proposed to learn
GAN models with differential privacy in centralized settings.

Federated learning [18] has emerged as a popular solution
for training machine learning models when input data is dis-
tributed across multiple parties. Without sharing local training
data, each party computes a local update to the global model
and shares the update with a central server; the server keeps
the global model up-to-date by aggregating all local updates.
However, when local parties have highly skewed, non-IID
data, the standard federated algorithm FedAvg [18] has shown
to perform poorly empirically [19]. To address statistical
heterogeneity among parties, FedProx [8] was proposed to
improve the convergence on learning over data from non-
identical distributions. There have been efforts to provide
differential privacy guarantees for participants of federated
learning [20]. In this work, we investigate the effects of
differential privacy on federated data synthesis with non-IID
distributions, which have not been well understood.

III. BACKGROUND

In this section, we will introduce differential privacy and
generative adversarial networks.

Differential Privacy. Differential privacy (DP) [15] is the
state-of-the-art notion for providing privacy protection in sta-
tistical databases. It allows the release of aggregate statistics
about the input database using randomized mechanisms, such
that the output is roughly the same by adding or removing an
individual record. Formally, given two neighboring databases
D and D′ which differ by at most one record, a randomized
mechanism M satisfies (ϵ, δ)-differential privacy [15] if for
any Z ⊂ range(M),

Pr[M(D) ∈ Z] ≤ eϵ · Pr[M(D′) ∈ Z] + δ (1)

The parameters ϵ > 0 and δ ∈ [0,1] specify the level of privacy.
Often referred to as the privacy budget, smaller ϵ and δ values
indicate stronger privacy, and vice versa.

(a) Local Training (b) Federated Training

Fig. 1: Approaches to Private Data Synthesis from Decentralized
Non-IID Data: note that in both approaches, the central server may
be potentially untrusted.

One property of differential privacy is its composability. To
keep track of the privacy budget spent in machine learning,
a privacy accountant based on moment accounting [16] has
been proposed. To give tighter bounds for privacy loss, the
Rényi Differential Privacy (RDP) Accountant [21] and a
subsampled RDP method [22] were proposed recently. In this
work, we adopt the RDP accountant for more accurate privacy
estimation and report the resulting ϵ and δ values.

While classic DP protects individual records (e.g., [16]),
there is a need for providing user-level privacy [15] when
each user contributes more than one record to the dataset, e.g.,
multiple user images for training a face recognition classifier.
Recent work [20] implements user-level privacy in federated
learning via local clipping and global perturbation, such that
the participation of a user is protected. We note that user-level
privacy is stronger than record-level privacy and may lead to
higher utility loss.
GANs. Generative Adversarial Networks (GANs) [4] are
state-of-the-art approaches for learning generative models and
producing realistic synthetic data. GAN models include a gen-
erator G and a discriminator D. The generator’s objective is to
produce realistic samples that can fool the discriminator, while
the discriminator’s goal is to distinguish between generated
samples and real ones. Let pz be G’s input noise distribution
and pdata be the real data distribution. The generator G and
discriminator D are trained in a two-player minimax game
with the following objective:

min
{G}

max
{D}

Ex∼pdata
[log(D(x))] +

generator loss lG︷ ︸︸ ︷
Ez∼pz

[log(1−D(G(z)))]︸ ︷︷ ︸
discriminator loss lD

(2)
Variants of the original GAN formulation have been proposed
to improve training and incorporate auxiliary information [23],
[24]. Differential privacy has been applied in learning GAN
models in centralized settings [17], i.e., where all training
data is located at one party while providing rigorous privacy
guarantees.

IV. PROPOSED APPROACHES

In this work, we address privacy-preserving data synthesis
via GANs in practical settings, where training data D is



distributed across K (K > 1) parties, i.e., D =
⋃D

k=1 D
k,

and local data distributions may be skewed, i.e., non-IID. We
assume that local datasets do not overlap, i.e., Di ∩ Dj = ∅
for i ̸= j. Specifically, we consider two different approaches
as shown in Fig. 1: (1) local GAN models are trained privately
by each party; (2) global GAN models are trained privately in
a federated framework.

A. Training GANs Locally

The first approach allows each party to train local GAN
models using private solutions designed for the centralized
setting. As a result, privacy protection is provided to local
records, independent of external factors. After training, syn-
thetic records sampled from private local generators can be
shared with a central server, which forms a repository of
synthetic data.

Specifically, we consider two existing solutions for this
approach, i.e., DPGAN [25] and privGAN [26]. DPGAN [25]
applies the DP-SGD method [16] in training GAN models,
which provides differential privacy guarantees to real samples.
DPGAN has been applied to synthesize a range of data types
in centralized settings [17]. However, due to the perturbation
introduced by differential privacy, the synthetic samples often
show lower quality compared to those of non-private GAN
models. Recently, privGAN [26] was proposed to defend
against membership inference attacks specifically. Its main
idea is to reduce the memorization of training samples by
training separate GAN models on disjoint partitions along
with a privacy discriminator to infer the generator of a given
synthetic sample. The overall objective is a weighted sum of
those of GAN models and the privacy discriminator, with a
multiplicative factor λ for the privacy discriminator. Lower λ
leads to reduced memorization and often lower quality. While
privGAN does not provide any privacy guarantees, it reported
good utility and efficacy against membership inference [26].

We propose to train DPGAN or privGAN models at each
local party with pre-defined privacy parameters, e.g., ϵ for
DPGAN and λ for privGAN, in order to provide equivalent
privacy protection across parties. The evaluation measures for
utility and privacy will be introduced in the following section.

B. Federated GAN Training

Federated learning has emerged as a promising solution
for jointly training machine learning models while the input
data is distributed across multiple parties. One advantage of
the federated learning paradigm is that it eliminates the need
for sharing input data with external parties, making it easier
to comply with local privacy policies and regulations. Our
second approach adopts the federated paradigm in which all
parties jointly train a pair of generator and discriminator with
differential privacy. Synthetic samples can be drawn from the
global generator once training is complete.

Prior work has incorporated differential privacy in the
FedAvg algorithm [20], where each user’s participation in
federated learning is protected. In this work, we propose to
address the non-IID data challenge in federated learning with

Algorithm 1 DP-FedProx-GAN
Server loop:
Input: total number of parties K ∈ N, total number of rounds

T ∈ N, sampling probability q ∈ (0, 1], noise scale
z ∈ R+ , clipping parameter S ∈ R+, generator θ0G ,
discriminator θ0D, privacy accountant M

Initialize σ = zS
qN

for round t = 0 in T − 1 do
Ct ← (randomly sample qN distinct parties)
for each party k ∈ Ct do

∆t+1
k ← LocalDiscUpdate(k, θtD, θtG) // compute
local update

end
∆t+1 ← 1

qN

∑
k∈Ct ∆

t+1
k

θt+1
D ← θtD + ∆t+1 + N (0, Iσ2) // update
discriminator privately
M.accum-privacy-spending(z)
θt+1
G ← GeneratorUpdate(θt+1

D , θtG)
end
M.accum-privacy-spent() // report total privacy

LocalDiscUpdate(k, θtD, θG):
Input: batch-size B ∈ N, number of disc. steps n ∈ N, disc.

learning rate ηD ∈ R+, clipping parameter S ∈ R+ ,
weight for proximal term µ ∈ R+

θD ← θtD
B ← (n size-B batches from Dk )
for each batch breal ∈ B do

bfake ← (sample B synthetic records from generator θG)
∇h← ∇hµ(θD) // as in (3), parameterized
with θtD, breal, bfake
θD ← θD − ηD∇h // local update

end
∆ = θD − θtD
return ∆k = ∆.min(1, S

||∆|| ) // clip locally

GeneratorUpdate(θD, θtG):
Input: batch-size B ∈ N, number of gen. steps n ∈ N, gen.

learning rate ηG ∈ R+

θG ← θtG
for each step from i = 0 to n do

bfake ← (sample B synthetic records from generator θG)
θG ← θG−ηG∇lG(θG) // update generator, lG
parameterized with θD and bfake

end
return θG



the FedProx algorithm [8] and modify the training procedure
to learn GAN models with differential privacy. Algorithm 1
depicts our proposed solution, namely DP-FedProx GAN.

The advantage of DP-FedProx GAN is that it achieves user-
level privacy by performing local clipping for gradient updates
at each party (as in LocalDiscUpdate), followed by global
aggregation and perturbation (as in Server loop). Note
that it has been shown that differential privacy can be achieved
by training only discriminators privately [25] (i.e., clipping and
perturbations are not required for training generators), thanks
to differential privacy’s resistance to post-processing.

Furthermore, DP-FedProx GAN tackles the significant vari-
ability in local data by adding the proximal term to the objec-
tive. Specifically, instead of just minimizing the discriminator
loss lD(.) as defined in (2), each party k employs its local
procedure to minimize the following objective approximately
at round t:

min
{θ}

hµ(θD) = lD(θD) +
µ

2
||θD − θtD||2 (3)

The proximal term aims to address both systems and statistical
heterogeneity by limiting local party updates closer to the
server’s global model, hence improving training stability. To
assess the efficacy of our proposed solution, we compare
it with the existing approach DP-FedAvg GAN [27] in the
empirical evaluation.

C. Non-IID Data Simulation

Non-IID data distributions may pose significant challenges
in decentralized machine learning applications [7]. Recent
research has explored partitioning techniques [28] to quantify
and control the imbalanced features of decentralized datasets,
which is beneficial for developing and validating new machine
learning algorithms. Inspired by prior research, below we
discuss various types of distributions considered in this work.

Non-Skew (NS). We use the non-skew distribution as a
baseline. In NS, each party has an equal-sized subset sampled
uniformly at random from the overall training data.

Quantity Skew (QS). In quantity skew, the size of each party’s
dataset |Dk| varies, without varying the label distribution. We
use the Dirichlet distribution as in [29]–[32] to simulate the
skewed quantities among parties. Formally, the probability
density function for Dirichlet distribution is defined as follows:

DirK,α(x) =
1

B(α)

K∏
k=1

xα−1
k where B(α) =

∏K
k=1 Γ(αk)

Γ(
∑K

i=k αk)
(4)

in which x is a K-dimensional variable and α = (α1, ..., αK)
representation concentration parameters. For simplicity, we
assume the same concentration parameter for every k. To
simulate different data quantifies across K parties, we draw
q ∼ DirK,α and assign qk proportion of training data to Dk.
We can control the amount of quantity imbalance by varying
the α value. A smaller α leads to a higher imbalance and vice
versa, as shown in Fig. 2.

Fig. 2: Examples of Quantity Skew: simulated 10 parties with
the MNIST dataset by varying α in Dirichlet distribution.

Quantity-based Label Imbalance (QLI). Besides quantity,
the label distribution may vary from one party to another.
Some studies [18], [29] noted that local data may contain
different subsets of labels. For example, one party may have
samples from classes 1 and 2, while another may have samples
from classes 2 and 3. To simulate quantity-based label
imbalance, we assign 3 classes to each party and randomly
assign samples of those classes to the party as in [32]. Note
that the quantities of local data are balanced in this setting.
Distribution-based Label Imbalance (DLI). In distribution-
based label imbalance, samples of each label is distributed
non-IID across the parties. For each label j, we draw pj ∼
DirK,α and assign pjk proportion of samples of label j to party
k as described in [32]. Note that in DLI, both the quantity and
the label distribution of the local dataset may differ between
one party and another.

V. EVALUATION MEASURES OF DATA SYNTHESIS

In this section, we describe a number of quality and privacy
measures adopted in evaluating data synthesis solutions. As a
proof of concept, this study focuses on image data, while the
proposed private data synthesis solutions can be generalized
to other domains.
Utility Metrics. To simulate human evaluation of synthetic
samples, strategies for assessing the realism and diversity of
generated data have been developed for GANs. Among them,
Inception Score (IS) [33], and Fréchet Inception Distance
(FID) [34] have been extensively evaluated in the literature.
The IS captures the KL divergence between the conditional
label distribution (estimated with the Inception model) and the
marginal distribution for synthetic samples. The FID computes
the Fréchet distance between the distributions of real data and
generated data.

Although the IS and FID scores take into account the unam-
biguity and relative abundance of distinct classes in generated
data, we look at those measures explicitly via entropy and
diversity measures as in [26]. Entropy is calculated for the
conditional label distribution of synthetic samples, which is
also estimated using the inception model. The diversity of
synthetic samples is computed using the most likely label for
each sample in the conditional distribution.
Membership Inference Risks. As the proposed solutions
adopt various privacy notions, i.e., non-differential privacy,



record-level DP, and user-level DP, it is important to evaluate
their privacy protection via common empirical measures. An
important class of privacy attacks in machine learning is
membership inference [6], [10]. With access to the learned
GAN models, the following membership inference attacks
may be launched. Although model sharing is not necessary
in data synthesis, evaluating those attacks provides insights
into the privacy properties of learned models and helps assess
the privacy loss in worst cases, e.g., by model stealing.

We adopt two attacks on GAN discriminators to the decen-
tralized setting, i.e., the white-box (WB) attack [5] and the
total variation distance (TVD) attack [26]. In these attacks, an
adversary aims to infer whether a sample is used in training the
GAN models and does not know the source of the sample, i.e.,
the party holding the sample. When GAN models are trained
locally, we adapt the original WB and TVD attacks such that
the adversary takes the maximum discriminator score over all
parties, with the intuition that the discriminator trained with a
specific sample will have the highest discriminator score.

The generator in GANs is also prone to set membership
inference in Monte–Carlo (MC) attacks [35]. In the MC attack,
the adversary’s objective is to determine whether a given
set of samples are part of the GAN models’ training set or
synthetically generated. It computes the similarity between
samples in each set using PCA transformation and preserves
40 principal components. The MC attack can be readily
evaluated using synthetic samples drawn from locally trained
GAN models as well as federated GAN models.

VI. EXPERIMENTS

In this section, we present the evaluation methodology and
empirical results on the proposed data synthesis solutions.

Datasets. Our experiments adopt the following datasets:
MNIST, Fashion-MNIST(f-MNIST), CIFAR-10, and CelebA.
Note that to create a balanced dataset, we sub-sampled the
original CelebA [36] to obtain 30 images per identity for 1000
celebrities. We also center-cropped each image to obtain face
regions of 48 × 48 pixels.

Approaches. We evaluate several approaches, i.e., local train-
ing of privGAN and DPGAN models and our proposed DP-
FedProx GAN. In addition, we include DP-FedAvg GAN [27],
which is the current solution for training GAN models in
decentralized settings. It is important to note that we also
consider an alternative approach, namely DP-FedSGD GAN,
which learns federated GAN models using the DP-FedSGD
algorithm [20]. However, we omit DP-FedSGD GAN from our
evaluation, as it requires a higher number of training iterations
and performs poorly compared to the other approaches.

Default Parameter Values. λ and ϵ parameters specify the
degree of privacy protection in privGAN, DPGAN, and DP-
FedProx GAN. The default values used are λ=1 in privGAN,
ϵ=4.01 in DPGAN, and ϵ=64.11 in DP-FedProx GAN and DP-
FedAvg GAN. The default sampling probability q is set to 0.1
in DP-FedProx GAN and DP-FedAvg GAN. For DP-FedProx
GAN, µ in (3) specifies the weight of the proximal term and is

MNIST f-MNIST CIFAR-10 CelebA
DPGAN 1e-2 1e-2 5e-2 5e-2

DP-FedProx GAN 1e-2 1e-2 5e-2 5e-2
DP-FedAvg GAN 1e-2 5e-2 5e-2 5e-2

TABLE I: Clipping Parameters for Differentially Private So-
lutions

MNIST f-MNIST CIFAR-10 CelebA
Real Data IS 9.9 9.6 9.1 141.4

Centralized GAN
(K = 1)

IS 9.2 9.0 7.8 88.8
FID 12.2 14.2 30.1 45.1

Local GANs
(K = 10)

IS 5.5 5.20 4.12 28.30
FID 40.80 38.50 80.23 110.54

Federated GAN
(K = 10)

IS 8.4 8.61 5.50 39.41
FID 16.21 25.50 56.41 78.45

TABLE II: IS and FID Scores: Real Data, Centralized Non-
Private GAN (K = 1), Non-Private Local and Federated
GANs with NS distribution (K = 10).

set to 0.5. The concentration parameter α indicates the level of
imbalance, and the default value is set α = 0.5. The number
of parties K is set as K = 10, unless specified otherwise.
Table I presents clipping parameters S for differentially
private solutions in each dataset.

A. Varying privacy parameters

Fig. 3: Varying Privacy Parameters

This experiment shows how the privacy parameters of pri-
vate GANs affect the utility metrics. As a reference, we show
IS and FID scores for non-private centralized GAN as well
as non-private local and federated GAN models in Table II.
In comparison to real data and synthetic data generated by
centralized GAN, all decentralized GAN solutions lead to high
utility loss, i.e., much lower IS scores. It can be seen that GAN



Fig. 4: Class Diversity and Average Entropy with MNIST

models trained locally suffer from limited data at each party.
As CelebA is smaller in size and higher in resolution, it is more
challenging to generate high-quality images in decentralized
settings.

Fig. 3 shows the results of IS measures for all private
solutions and all datasets. When we increase λ in privGAN
and decrease ϵ in DPGAN, DP-FedProx GAN and DP-FedAvg
GAN, the utility improves monotonically. We observe that
training GANs locally (i.e., privGAN and DPGAN) does not
learn the underlying distribution of local data well in non-skew
(NS) settings. The reason is that none of the local parties
holds sufficient data. For example, NS distribution has the
lowest utility across all λ in privGAN and ϵ in DPGAN.
However, DP-FedProx GAN shows a higher utility with NS, in
comparison to non-IID distributions. As a random subset of
local parties participates in each round of training the DP-
FedProx GAN, NS distributions can be learned uniformly
across parties. We note that DP-FedProx GAN effectively
manages statistical heterogeneity by constraining local updates
to be closer to the global model, as all non-IID distributions
yield similar performance to that of NS. As expected, DP-
FedAvg GAN struggles to learn from non-IID data distribu-
tions and consistently yields lower utility than DP-FedProx
GAN across all datasets. Therefore, we omit DP-FedAvg GAN
from the rest of the experiments.

In QLI settings, locally trained GAN solutions often lead to
good utility because each party focuses on learning only a few
classes without encountering mode collapse and instability in
GAN training. For instance, QLI has the highest IS for priv-
GAN and DPGAN across all λ and ϵ values, respectively, in
MNIST, f-MNIST, and CIFAR-10. In QS settings, we observe

Fig. 5: Varying Number of Parties with MNIST

that parties with more data are comparatively more influential
(i.e., better utility) for privGAN and DPGAN solutions. QS
also leads to better utility in DP-FedProx GAN for the dataset,
in comparison to other distributions.

In Fig. 4, we report the effects of privacy parameters on FID
score, class diversity, and average entropy with the MNIST
dataset. As λ increases in privGAN and ϵ decreases in DPGAN
and DP-FedAvg GAN, both FID and entropy increase, and
diversity decreases accordingly. QLI shows the highest class
diversity and the lowest FID and average entropy for PrivGAN
and DPGAN solutions. Again, all distributions yield similar
performances in DP-FedProx GAN, indicating its efficacy in
addressing non-IID distributions.

B. Varying the Number of Parties

We investigate the effects of the number of parties (K) on
utility metrics with the MNIST dataset, as shown in Fig. 5. To
conduct this experiment, we partition the training set among
K = 40 parties in each distribution setting and select the
specified number of parties for model training. We observe
higher utility as K increases because private GANs utilize
more data contributed by a larger number of parties, which is
beneficial for generating high-quality and diversified synthetic
data. DP-FedProx GAN consistently outperforms privGAN
and DPGAN, as locally trained GAN models perform poorly
due to small amounts of local data. When larger numbers
of parties are involved (K > 15), a significant increase in
utility can be observed for DP-FedProx GAN, as opposed
to privGAN and DPGAN. At K = 40, DP-FedProx GAN
achieves around 7 Inception Score while that of privGAN and
DPGAN is around 4. It illustrates that the DP-FedProx GAN
approach leads to the higher utility when a large number of
parties participate.

C. Varying Concentration Parameter for Skew Distribution

In this experiment, we investigate how private data synthesis
solutions behave by varying the concentration parameter α in
Fig. 6. Recall that smaller α values lead to more unbalanced
distributions. As we increase the α, the data distributions
approach the NS setting; as a result, utility drops for privGAN
and DPGAN and increases for DP-FedProx GAN. This result
is consistent with our observations early on.

When data is highly imbalanced, i.e., low α values, locally
trained GANs perform better in DLI than in QS. The reason is
that highly imbalanced label distributions lead to samples from



Fig. 6: Varying Concentration Parameter

WB MC TVD
Centralized GAN

(K = 1) - 48.1 77.1 0.438

Local GANs
(K = 10)

NS 11.50 68.8 0.37
QLI 25.10 72.1 0.45
DLI 17.50 69.3 0.41
QS 18.25 70.5 0.44

Federated GAN
(K = 10)

NS 21.50 72.8 0.44
QLI 20.00 71.1 0.41
DLI 20.50 68.1 0.40
QS 21.12 72.2 0.43

TABLE III: Attack results on synthetic images generated with
non-private centralized private GAN (K = 1) as well as non-
private local GANs and federated GAN model (K = 10) with
MNIST dataset.

fewer classes at each party, which resembles the QLI setting.
From our observations early on, we know that privGAN and
DPGAN perform best in the QLI setting. As α increases,
the difference between DLI and QS diminishes, so does the
performance gap between those settings for privGAN and
DPGAN. With lower α values, DP-FedProx GAN performs
better in QS than in DLI, as each party in QS settings has
a balanced label distribution, which is more helpful for the
federated solution.

D. Membership Inference Attacks

In this experiment, we vary the privacy parameters for the
private data synthesis solutions to study their defense against
membership inference attacks (i.e., WB, MC, and TVD) with
the MNIST dataset. Details regarding the attack implementa-
tions can be found in the appendix. As a reference, in Table III
we present the attack results for non-private centralized GAN
as well as local and federated GAN models. In decentralized
settings, we observe consistent reductions in the accuracy of
WB and MC attacks compared to the centralized setting, but
increased TVD scores in some distributions.

In Fig. 7, we report the attack accuracies for private
solutions by varying λ in privGAN and ϵ in DPGAN and
DP-FedProx GAN. We observe that private solutions reduce
the accuracy of WB, MC, and TVD attacks consistently,
with respect to their non-private baselines in decentralized
settings. Furthermore, as we improve the privacy protection,
i.e., increasing λ in privGAN and decreasing ϵ in DPGAN
and DP-FedProx GAN, the attack accuracies can be further
reduced.

Fig. 7: Attacks on Discriminators and Generators with MNIST

For locally trained private GANs (privGAN and DPGAN),
privacy attacks in the NS setting may be the least successful,
compared to non-IID settings. The lower privacy risk corre-
sponds to the lower utility for privGAN and DPGAN in NS
as in Fig. 3, as private local GAN models struggle to learn
from small local data. However, in DP-FedProx GAN, the
NS distribution is among the most susceptible to membership
attacks, as the federated GAN model learns data distributions
well from all parties.

In the QLI setting, as privGAN and DPGAN perform
relatively well in utility (see Fig. 3), the learned generators
and discriminators are more prone to membership inference
attacks, e.g., higher MC and TVD scores in Fig. 7. We also
observe that the privGAN and DPGAN discriminators learned
in the QS setting can leak membership information, i.e.,
resulting in higher WB accuracy than other settings, despite
lower utility in data synthesis. On the other hand, in DP-
FedProx GAN, the learned discriminator and generator are
consistent in privacy leakage among all distribution settings.
Furthermore, the privacy leakage is also consistent with DP-
FedProx GAN utility results among all distribution settings. In
the next subsection, we further examine the trade-off between
empirical privacy and utility for all private solutions.

E. Privacy vs. Utility

We note that the proposed data synthesis solutions do not
share the privacy notion. Specifically, privGAN doesn’t pro-
vide any privacy guarantees, while DPGAN and DP-FedProx
GAN provide record-level and user-level differential privacy
guarantees, respectively. Therefore, we conduct a privacy
utility trade-off analysis among those solutions in terms of
WB membership inference risks in Fig. 8. It can be observed



Fig. 8: Privacy vs. Utility Tradeoff

that generally privGAN results in higher WB attack risks than
DPGAN and DP-FedProx GAN.

We observe that DP-FedProx GAN the best privacy-utility
tradeoff in NS distributions: given a WB accuracy, DP-
FedProx GAN often provides better IS scores than privGAN
and DPGAN. DPGAN provides good privacy-utility trade-
off in non-IID distributions for three simpler datasets (i.e.,
MNIST, f-MNIST, CIFAR-10). In non-IID distributions for
those datasets, privGAN may provide better utility at the
expense of increased privacy risks.

For the CelebA dataset, DP-FedProx GAN clearly outper-
forms privGAN and DPGAN, by consistently dominating two
other methods in utility at the same privacy risk level. This
shows DP-FedProx GAN is superior in balancing privacy and
utility with a large number of classes (1000) and few samples
per class (30). Both locally trained private GANs suffer from
lower utility and privGAN yields higher privacy risks, due to
their lack of privacy guarantees.

VII. DISCUSSION

Interpreting the Results. Considering the results combined,
we note that DP-FedProx GAN outperforms privGAN and
DPGAN in non-skew and moderately skewed settings (see
Fig. 3 and 6). In highly skewed settings, its strong user-level
differential privacy may lead to higher utility loss, as parties
have equal chance of participating in each round despite the
amount of local data. On the other hand, training privGAN
or DPGAN locally may yield good utility in non-IID settings,
as parties with larger amounts of data dominate the quality
measures. Among different non-IID distributions, local priv-
GAN and DPGAN show great promise for QLI, where each

party focuses on synthesizing samples of a small number of
classes; DP-FedProx GAN produces similar results for all non-
IID distributions, demonstrating its capability to learn a variety
of data distributions. For complex tasks, e.g., learning the
subsampled CelebA with a large number of classes and fewer
samples per class, all approaches produce better quality data
in QS settings; the difference between distributions diminishes
by increasing the amount of skewness as in Fig. 6. Lastly,
increasing the number of parties significantly boosts the utility
of DP-FedProx GAN, while privGAN and DPGAN only show
marginal utility gain as in Fig. 5.
Deployment Choice. Given different privacy models and wide
variability in utility performances, there is no one-size-fits-all
solution for private synthesis with decentralized non-IID data.
While training GAN models locally provides full autonomy to
each party, training federated GAN models allow all parties to
contribute meaningfully, even those with very small amounts
of local data. Furthermore, DP-FedProx GAN motivates local
parties to jointly train models, as it shows significant utility
benefits as the number of parties increases in Fig. 5. Moreover,
we showcase how to conduct a trade-off analysis between
utility measures and empirical privacy risks as in Fig. 8. It
can be observed that privGAN may lead to higher privacy
risks, due to lack of a formal privacy model. We argue that
approaches that provide differential privacy guarantees (i.e.,
DPGAN and DP-FedProx GAN) should be considered due to
their rigorous and future-proof privacy protection.
Practical Considerations. Needless to say, a number of
considerations should be addressed for the practical adoption
of the proposed solutions. Firstly, all parties must agree on
the training mode (i.e., local vs. federated) and the privacy
settings (e.g., λ and ϵ). When parties have different privacy
requirements (e.g., in terms of ϵ values for DP), the strongest
privacy level (e.g., lowest ϵ) should be adopted to ensure
privacy for all parties. Secondly, in the local GAN training
approach, when each party contributes synthetic data of the
same size as that of the local dataset, it may disclose aggregate-
level information about private data. That may be addressed by
applying differential privacy (e.g., Laplace mechanism [15])
to the local count and sampling synthetic records according to
the noise count. Lastly, we recommend grid search approaches
for uncovering suitable hyper-parameters in local training
approaches and weight-sharing for the federated GAN training.
Recent research on hyper-parameter optimization in federated
settings [37] may provide new opportunities for the practical
deployment of the federated approach.

VIII. CONCLUSION

In this paper, we studied several practical solutions for pri-
vate synthesis using GANs with decentralized, non-IID data.
Among them, privGAN and DPGAN can be trained by each
party locally and DP-FedProx GAN is trained jointly by all
parties with strong user-level differential privacy guarantees.
We conducted an extensive empirical evaluation with data
from multiple image domains and simulated a variety of non-
IID distributions. We provided an in-depth analysis of the



evaluation results, regarding the usefulness of synthetic data,
privacy risks in membership inference attacks, and the privacy
utility trade-off for the proposed solutions.

Several directions are open for future research on private
data synthesis from decentralized non-IID data. Firstly, it is
helpful for future research to address data with imbalanced
labels. Privacy risks may be higher due to class imbalance [38].
Achieving high data synthesis utility for class-imbalanced data
may also be challenging, especially for rare classes. Secondly,
understanding the usefulness of synthetic data in various appli-
cations would be beneficial, e.g., in clinical decision support
systems. Thirdly, future research may extend to emerging fed-
erated learning results for non-IID data, such as FedCurv [39],
which proposes to share additional elements by each local
party to overcome forgetting. As a result, such approaches
may lead to additional privacy risks and thus demand new
solutions. Lastly, it would be interesting to develop grid search
approaches for hyper-parameters in federated GAN training,
with privacy guarantees, e.g., differential privacy. It will help
provide end-to-end privacy for data synthesis in decentralized
settings.
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APPENDIX

A. Implementation Details

For MNIST and f-MNIST, we use standard, fully connected networks for both generators and discriminators. On the other
hand, we adopt a Deep Convolutional Generative Adversarial Network (DCGAN) structure for EMNIST [40], CIFAR-10, and
CelebA datasets. All GAN models have identical generator and discriminator architectures for the respective dataset (see details
below).

For evaluation, we train the privGAN models with an Adam (β=5) optimizer for both the generator and discriminator. For
differentially private GANs (i.e., DPGAN, DP-FedProx GAN, DP-FedAvg GAN, and DP-FedSGD GAN), we use Differentially
Private Stochastic Gradient Descent (DP-SGD) optimizer for the discriminator. For the generator, we use Adam (β=5) optimizer
in DPGAN and SGD optimizer in DP-FedProx GAN, DP-FedAvg GAN, and DP-FedSGD GAN. We set a 0.0002 learning
rate for all optimizers. The batch size adopted for privGAN is 256. For DP-GAN, the batch size is varied from 16 to 64 in
order to meet the specified privacy parameter ϵ. For DP-FedProx GAN and DP-FedAvg GAN, the batch size is set to 32 for
CIFAR-10 and CelebA and to 64 for other datasets. For each round in DP-FedSGD GAN, we randomly select a batch size of
qDk for the k-th party, where q signifies the sampling probability (0.1) and Dk refers to the local data size of the k-th party.
The default value for DP-FedSGD GAN is set at ϵ=98.01.

While evaluating the different adversarial attacks on PrivGAN, we train PrivGAN for 500 epochs using the same optimizer
and hyperparameters. Similarly, we train all differentially private GAN models with a fixed privacy budget ϵ, setting the noise
scale z to achieve the specified ϵ. For WB and TVD attacks, we use 10% of the training set to train models, following the
approach in [5].

To evaluate the MC attack, we follow the methodology in [26], [35]. We use 10% of the training set for training the
attack model and evaluate the model on the residual 90% of the training set. The test set is utilized solely to calculate
the principal components for all datasets. In federated training (i.e., DP-FedProx GAN, DP-FedAvg GAN, and DP-FedSGD
GAN), the central server generates 100,000 synthetic samples. In local training (i.e., PrivGAN and DPGAN), we sample
100,000 synthetic samples from each party.

In order to ensure the results are representative, we performed each experiment five times and reported the average outcomes
for both utility and adversarial assessments.

B. Complexity Analysis

In DP-FedProx GAN and DP-FedAvg GAN, the time complexity for each party is O(nBT )), where n represents the number
of steps for local discriminator and generator updates, B represents the batch size, and T represents the total number of rounds.
In the context of privGAN and DPGAN, the time complexity for each party can be expressed as O(DE), where D is the
upper bound of local data size, and E corresponds to the number of epochs for the local model training.
⋄ MNIST and f-MNIST
Generator Layers
• Dense(units= 256, input size= 100)
• LeakyReLU(α = 0.2)
• Dense(units= 512)
• LeakyReLU(α = 0.2)
• Dense(units= 1024)
• LeakyReLU(α = 0.2)
• Dense(units= 784, activation = ’tanh’)
Discriminator Layers
• Dense(units= 1024)
• LeakyReLU(α = 0.2)
• Dense(units= 512)
• LeakyReLU(α = 0.2)
• Dense(units= 256)
• LeakyReLU(α = 0.2)
• Dense(units= 1, activation = ’sigmoid’)
Privacy Discriminator Layers in privGAN
• Dense(units= 1024)
• LeakyReLU(α = 0.2)
• Dense(units= 512)
• LeakyReLU(α = 0.2)
• Dense(units= 256)



• LeakyReLU(α = 0.2)
• Dense(units = # generators, activation =’softmax’)
⋄ CIFAR-10
Generator Layers
• Dense(units= 2048, input size= 100, target shape= (2, 2, 512))
• Conv2DTranspose(filters= 256, kernel size= 5, strides= 2)
• LeakyReLU(α = 0.2)
• Conv2DTranspose(filters= 128, kernel size= 5, strides= 2)
• LeakyReLU(α = 0.2)
• Conv2DTranspose(filters= 64, kernel size= 5, strides= 2)
• LeakyReLU(α = 0.2)
• Conv2DTranspose(filters= 3, kernel size= 5, strides= 2, activation = ’tanh’)
Discriminator Layers
• Conv2D(filters= 64, kernel size= 5, strides= 2)
• Reshape(target shape= (2, 2, 512))
• Conv2D(filters= 128, kernel size= 5, strides= 2)
• LeakyReLU(α = 0.2)
• Conv2D(filters= 128, kernel size= 5, strides= 2)
• LeakyReLU(α = 0.2)
• Conv2D(filters= 256, kernel size= 5, strides= 2)
• LeakyReLU(α = 0.2)
• Dense(units= 1, activation = ’sigmoid’)
Privacy Discriminator Layers in privGAN
• Conv2D(filters= 64, kernel size= 5, strides= 2)
• Reshape(target shape= (2, 2, 512))
• Conv2D(filters= 128, kernel size= 5, strides= 2)
• LeakyReLU(α = 0.2)
• Conv2D(filters= 128, kernel size= 5, strides= 2)
• LeakyReLU(α = 0.2)
• Conv2D(filters= 256, kernel size= 5, strides= 2)
• LeakyReLU(α = 0.2)
• Dense(units = # generators, activation = ’softmax’)
⋄ CelebA
Generator Layers
• Dense(units= 2048, input size= 100, target shape= (2, 2, 512))
• Conv2DTranspose(filters= 256, kernel size= 5, strides= 2)
• LeakyReLU(α = 0.2)
• Conv2DTranspose(filters= 128, kernel size= 5, strides= 2)
• LeakyReLU(α = 0.2)
• Conv2DTranspose(filters= 64, kernel size= 5, strides= 2)
• LeakyReLU(α = 0.2)
• Conv2DTranspose(filters= 3, kernel size= 5, strides= 3, activation = ’tanh’)
Discriminator Layers
• Conv2D(filters= 64, kernel size= 5, strides= 2)
• Reshape(target shape= (2, 2, 512))
• Conv2D(filters= 128, kernel size= 5, strides= 2)
• LeakyReLU(α = 0.2)
• Conv2D(filters= 128, kernel size= 5, strides= 2)
• LeakyReLU(α = 0.2)
• Conv2D(filters= 256, kernel size= 5, strides= 2)
• LeakyReLU(α = 0.2)
• Dense(units= 1, activation = ’sigmoid’)
Privacy Discriminator Layers in privGAN
• Conv2D(filters= 64, kernel size= 5, strides= 2)



Fig. 9: Inception Score with Non-Private Local GANs and Federated GAN: The Figure shows the inception score and FID
score for different distributions for each dataset in local GANs and federated GAN with K = 10.

• Reshape(target shape= (2, 2, 512))
• Conv2D(filters= 128, kernel size= 5, strides= 2)
• LeakyReLU(α = 0.2)
• Conv2D(filters= 128, kernel size= 5, strides= 2)
• LeakyReLU(α = 0.2)
• Conv2D(filters= 256, kernel size= 5, strides= 2)
• LeakyReLU(α = 0.2)
• Dense(units = # generators, activation = ’softmax’)
⋄ EMNIST
Generator Layers
• Dense(units= 1024, input size= 100)
• Dense(units= 7 * 7 * 256)
• Reshape(target shape= ( 7, 7, 256))
• Conv2D(filters= 64, kernel size= 4, strides= 2)
• BatchNormalization()
• LeakyReLU(α = 0.01)
• Conv2D(filters= 32, kernel size= 4, strides= 2)
• BatchNormalization()
• LeakyReLU(α = 0.01)
• Conv2D(filters= 1, kernel size= 4)
Discriminator Layers
• Conv2D(filters= 64, kernel size= 4, strides= 2)
• LeakyReLU(α = 0.01)
• Conv2D(filters= 128, kernel size= 4, strides= 2)
• LeakyReLU(α = 0.01)
• Flatten()
• Dense(units= 1024)
• LeakyReLU(α = 0.01)
• Dense(units= 1, activation = ’sigmoid’)

C. Additional Experiments on Utility and Membership Inference Attacks

For all following experiments, we use the default parameter values listed in Section 6 unless otherwise stated.



Fig. 10: Varying Privacy Parameters: The Figure illustrates FID Score for various privacy parameters in privGAN, DPGAN,
DP-FedProx GAN, and DP-FedAvg GAN.



Fig. 11: Varying Privacy Parameters in DP-FedSGD GAN: The Figure represents inception and FID Score at various privacy
parameters in DP-FedSGD GAN. DP-FedSGD GAN has the worst utility in terms of IS and FID compared to the DP-FedProx
GAN and DP-FedAvg GAN, as shown in the Fig 3 and 10.

Fig. 12: Varying Privacy Parameters on EMNIST. The Figure depicts the inception and FID score at various privacy parameters in DP-
FedProx GAN and DP-FedAvg GAN at K=500 on EMNIST.



Fig. 13: Varying Number of Parties: The Figure depicts the inception score for various distributions at various numbers of
parties in privGAN, DPGAN, and DP-FedProx GAN.

Fig. 14: Varying Concentration Parameters: The Figure illustrates the FID score for different distributions at various
concentration parameters in privGAN, DPGAN, and DP-FedProx GAN.



Fig. 15: Varying Concentration Parameter on EMNIST with 500 Parties (K=500) using DP-FedProx GAN and DP-FedAvg GAN .

Fig. 16: White-Box accuracy for Non-Private Local GANs and Federated GAN: The Figure displays the results of a white-box
attack using non-private local GANs and federated GAN with K = 10 for various distributions for each dataset.



Fig. 17: Varying privacy parameters for White-Box Attack: The Figure shows white-box accuracy on discriminator(s) in
privGAN, DPGAN, and DP-FedProx GAN for various privacy parameters.

Fig. 18: Monte-Carlo accuracy for Non-Private Local GANs and Federated GAN: The Figure displays the results of a monte-
carlo attack using non-private local GANs and federated GAN with K = 10 for various distributions for each dataset.



Fig. 19: Varying privacy parameters for Monte-Carlo Attack: The Figure shows Monte-Carlo Attack on the generator(s) in
privGAN, DPGAN, and DP-FedProx GAN for various privacy parameters.



Fig. 20: Privacy vs. Utility: The Figure shows Monte-Carlo Attack vs Inception Score in privGAN, DPGAN, and DP-FedProx
GAN for various privacy parameters.

Fig. 21: TVD score for Non-Private Local GANs and Federated GAN: The Figure displays the results of a TVD attack score
using non-private local GANs and federated GAN with K = 10 for various distributions for each dataset.



Fig. 22: Varying privacy parameters for TVD Attack: For different privacy parameters, the Figure displays the TVD attack
score on the discriminator(s) in privGAN, DPGAN, and DP-FedProx GAN.



Fig. 23: Privacy vs. Utility: The Figure shows TVD Attack vs Inception Score in privGAN, DPGAN, and DP-FedProx GAN
for various privacy parameters.
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